Skip to content
Snippets Groups Projects
Commit 471ce7bf authored by Ramsha Narmeen's avatar Ramsha Narmeen
Browse files

Upload New File

parent e7194ca0
Branches main
No related tags found
No related merge requests found
function action = DDPG_CIO_Decision(k,cn,c_req)
num_episodes = 100;
gamma = 0.99;
actor_lr = 0.001;
critic_lr = 0.01;
CIO_min = -6;
CIO_max = 6;
actornet = create_actor_network(k);
criticnet = create_critic_network(k);
obsInfo = rlNumericSpec([k+1 1]);
actInfo = rlNumericSpec([k 1],'LowerLimit', 0, 'UpperLimit', 1);
actor = rlContinuousDeterministicActor(actornet,obsInfo,actInfo);
critic = rlQValueFunction(criticnet,obsInfo,actInfo,...
ObservationInputNames="netOin", ...
ActionInputNames="netAin");
agentOptions = rlDDPGAgentOptions(...
'TargetSmoothFactor', 1e-3, ...
'SampleTime', 0.01, ...
'ExperienceBufferLength', 1e6, ...
'DiscountFactor', 0.99, ...
'MiniBatchSize', 64, ...
'NumStepsToLookAhead', 1);
agent = rlDDPGAgent(actor, critic, agentOptions);
trainOpts = rlTrainingOptions(...
MaxEpisodes=100,...
MaxStepsPerEpisode=100,...
StopTrainingCriteria="AverageReward",...
StopTrainingValue=2000);
replay_buffer = [];
state = initialize_state(k+1,CIO_min,CIO_max);
for episode = 1:num_episodes
action = select_action(actornet, state, CIO_min, CIO_max);
[next_state, reward] = perform_action_prop(state, action,cn,c_req,CIO_min,CIO_max);
experience = struct('state', state, 'action', action, 'reward', reward, 'next_state', next_state);
replay_buffer = [replay_buffer, experience];
criticnet = update_critic(actornet, criticnet, replay_buffer, critic_lr, gamma,CIO_min,CIO_max);
actornet = update_actor(actornet, criticnet, replay_buffer, actor_lr, gamma, CIO_min,CIO_max);
state = next_state;
end
end
\ No newline at end of file
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment