Skip to content
GitLab
Explore
Sign in
Primary navigation
Search or go to…
Project
M
MPV
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Package Registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Jan Macalík
MPV
Commits
660eae7f
Commit
660eae7f
authored
2 years ago
by
Dmytro Mishkin
Browse files
Options
Downloads
Patches
Plain Diff
update example
parent
3995a4a0
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
assignment_0_3_correspondences_template/imagefiltering.ipynb
+2
-2
2 additions, 2 deletions
assignment_0_3_correspondences_template/imagefiltering.ipynb
with
2 additions
and
2 deletions
assignment_0_3_correspondences_template/imagefiltering.ipynb
+
2
−
2
View file @
660eae7f
...
...
@@ -550,7 +550,7 @@
"print (f'A = {A}')\n",
"patches = extract_antializased_affine_patches(timg1,\n",
" A, \n",
" torch.zeros(A.size(0)).long(),\n",
" torch.zeros(A.size(0)).long()
.reshape(-1,1)
,\n",
" 32, 1.0)\n",
"\n",
"print (f'patches.shape = {patches.shape}')\n",
...
...
@@ -591,7 +591,7 @@
"print (f'A = {A}')\n",
"patches = extract_antializased_affine_patches(timg1,\n",
" A, \n",
" torch.zeros(A.size(0)).long(),\n",
" torch.zeros(A.size(0)).long()
.reshape(-1,1)
,\n",
" 32, 1.0)\n",
"\n",
"print (f'patches.shape = {patches.shape}')\n",
...
...
%% Cell type:markdown id: tags:
# Lab 0: introduction into image filtering using PyTorch
This is a notebook, which could help you with testing first lab assignment.
It contains utility functions for visualization, some test input for the functions you needs to implement,
and the output of the reference solution for the same test input.
template functions for the assignment contain a short description of what the function is supposed to do,
and produce an incorrect output, which is nevertheless in proper format: type and shape.
You are not allowed to use kornia or opencv or any other library functions, which are specifically designed
to perform the operations requested in assignment
%% Cell type:code id: tags:
``` python
%load_ext autoreload
%autoreload 2
import matplotlib.pyplot as plt
import numpy as np
import torch
import kornia
def plot_torch(x, y, *kwargs):
plt.plot(x.detach().cpu().numpy(), y.detach().cpu().numpy(), *kwargs)
return
def imshow_torch(tensor, *kwargs):
plt.figure()
plt.imshow(kornia.tensor_to_image(tensor), *kwargs)
return
inp = torch.linspace(-12, 12, 101)
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
from imagefiltering import gaussian_deriv1d
plot_torch(inp, gaussian_deriv1d(inp, 3.0), 'r-')
```
%% Output
%% Cell type:markdown id: tags:
## Reference example
```python
from lab0_reference.imagefiltering import gaussian_deriv1d
plot_torch(inp, gaussian_deriv1d(inp, 3.0), 'r-')
```

%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
## Convolution vs correlation
Despite the name, pytorch `convolution` operator does in fact **correlation**. The correlation result is convolution, rotated by 180 degree.
To distingguish the difference, remember that **convolution copies the kernel for the impulse signal**.
%% Cell type:code id: tags:
``` python
from imagefiltering import filter2d #, dgauss, gaussfilter, gaussderiv, gaussderiv2
from torch.nn.functional import conv2d
inp = torch.zeros((1,1,32,32))
inp[...,16,16] = 1.
imshow_torch(inp)
kernel = torch.ones(3,3)
out = filter2d(inp, kernel)
imshow_torch(out)
### Signal-copy illustration.
inp2 = torch.zeros((1,1,5,5))
inp2[...,2,2] = 1.
kernel2 = torch.arange(1,10).reshape(3,3).float()
out2 = filter2d(inp2, kernel2)
out2_corr = conv2d(inp2, kernel2[None, None], stride=1, padding=1)
print (f'inp2 = {inp2}, \n\n kernel2={kernel2},\n \n true conv output2=\n {out2}')
print (f'pytorch convolution aka correlation result =\n {out2_corr}')
```
%% Output
inp2 = tensor([[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]]]),
kernel2=tensor([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]),
true conv output2=
tensor([[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]]])
pytorch convolution aka correlation result =
tensor([[[[0., 0., 0., 0., 0.],
[0., 9., 8., 7., 0.],
[0., 6., 5., 4., 0.],
[0., 3., 2., 1., 0.],
[0., 0., 0., 0., 0.]]]])
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
## Reference example
```python
from imagefiltering import filter2d
inp = torch.zeros((1,1,32,32))
inp[...,16,16] = 1.
imshow_torch(inp)
kernel = torch.ones(3,3)
out = filter2d(inp, kernel)
imshow_torch(out)
```
inp2 = tensor([[[[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 1., 0., 0.],
[0., 0., 0., 0., 0.],
[0., 0., 0., 0., 0.]]]]),
kernel2=tensor([[1., 2., 3.],
[4., 5., 6.],
[7., 8., 9.]]),
true conv output2=
tensor([[[[0., 0., 0., 0., 0.],
[0., 1., 2., 3., 0.],
[0., 4., 5., 6., 0.],
[0., 7., 8., 9., 0.],
[0., 0., 0., 0., 0.]]]])
pytorch convolution aka correlation result =
tensor([[[[0., 0., 0., 0., 0.],
[0., 9., 8., 7., 0.],
[0., 6., 5., 4., 0.],
[0., 3., 2., 1., 0.],
[0., 0., 0., 0., 0.]]]])

%% Cell type:code id: tags:
``` python
from imagefiltering import gaussian_filter2d
inp = torch.zeros((1,1,32,32))
inp[...,15,15] = 1.
imshow_torch(inp)
sigma = 3.0
out = gaussian_filter2d(inp, sigma)
imshow_torch(out)
```
%% Output
%% Cell type:markdown id: tags:
## Reference example
```python
from lab0_reference.imagefiltering import gaussian_filter2d
inp = torch.zeros((1,1,32,32))
inp[...,15,15] = 1.
imshow_torch(inp)
sigma = 3.0
out = gaussian_filter2d(inp, sigma)
imshow_torch(out)
```

%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
def imshow_torch_channels(tensor, dim = 1, *kwargs):
num_ch = tensor.size(dim)
fig=plt.figure(figsize=(num_ch*5,5))
tensor_splitted = torch.split(tensor, 1, dim=dim)
for i in range(num_ch):
fig.add_subplot(1, num_ch, i+1)
plt.imshow(kornia.tensor_to_image(tensor_splitted[i].squeeze(dim)), *kwargs)
return
from imagefiltering import spatial_gradient_first_order
inp = torch.zeros((1,1,32,32))
inp[...,15,15] = 1.
imshow_torch(inp)
sigma = 3.0
out2 = spatial_gradient_first_order(inp, sigma)
print (out.shape)
imshow_torch_channels(out2, 2)
```
%% Output
torch.Size([1, 1, 32, 32])
%% Cell type:markdown id: tags:
## Reference example
```python
from lab0_reference.imagefiltering import spatial_gradient_first_order
inp = torch.zeros((1,1,32,32))
inp[...,15,15] = 1.
imshow_torch(inp)
sigma = 3.0
out = spatial_gradient_first_order(inp, sigma)
print (out.shape)
imshow_torch_channels(out, 2)
```

%% Cell type:markdown id: tags:
## Converting (center, unit_x, unit_y) into affine transform A

%% Cell type:code id: tags:
``` python
from imagefiltering import affine
inp = torch.tensor([[3, 3.]]), torch.tensor([[6, 3.]]), torch.tensor([[3, 6.]])
A = affine(*inp)
print (A)
```
%% Output
tensor([[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]])
%% Cell type:markdown id: tags:
## Reference example
```python
from lab0_reference.imagefiltering import affine
inp = 3, 3, 6, 3, 3, 6
A = affine(*inp)
print (A)
```
tensor([[3., 0., 3.],
[0., 3., 3.],
[0., 0., 1.]])
%% Cell type:markdown id: tags:
## Affine patch extraction
The y-axis here is flipped, so for the both image and patch we have it pointing down.

%% Cell type:code id: tags:
``` python
from imagefiltering import extract_affine_patches, extract_antializased_affine_patches, affine
import cv2
def load_torch_image_rgb(fname):
img1 = cv2.imread(fname)
timg1 = kornia.image_to_tensor(img1, False).float()
timg1 = kornia.color.bgr_to_rgb(timg1) / 255.
return timg1
timg1 = load_torch_image_rgb('graffiti.ppm')
imshow_torch(timg1)
patch_centers = torch.tensor([[300., 200.], [400., 300], [330, 200], [100,100]])
patch_unitx = torch.tensor([[350., 210.], [450., 300], [380, 200], [150,150]])
patch_unity = torch.tensor([[270., 150.], [400., 360], [330,250], [50, 150]])
A = affine(patch_centers, patch_unitx, patch_unity)
print (f'A = {A}')
patches = extract_antializased_affine_patches(timg1,
A,
torch.zeros(A.size(0)).long(),
torch.zeros(A.size(0)).long()
.reshape(-1,1)
,
32, 1.0)
print (f'patches.shape = {patches.shape}')
imshow_torch_channels(patches, 0)
```
%% Output
A = tensor([[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]],
[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]],
[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]],
[[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]]])
patches.shape = torch.Size([4, 3, 32, 32])
%% Cell type:markdown id: tags:
## Reference example
```python
from imagefiltering import extract_affine_patches, extract_antializased_affine_patches, affine
import cv2
def load_torch_image_rgb(fname):
img1 = cv2.imread(fname)
timg1 = kornia.image_to_tensor(img1, False).float()
timg1 = kornia.color.bgr_to_rgb(timg1) / 255.
return timg1
timg1 = load_torch_image_rgb('graffiti.ppm')
imshow_torch(timg1)
patch_centers = torch.tensor([[300., 200.], [400., 300], [600,600], [100,100]])
patch_unitx = torch.tensor([[350., 210.], [450., 300], [650,600], [150,150]])
patch_unity = torch.tensor([[270., 150.], [400., 360], [600,650], [50, 150]])
A = affine(patch_centers, patch_unitx, patch_unity)
print (f'A = {A}')
patches = extract_antializased_affine_patches(timg1,
A,
torch.zeros(A.size(0)).long(),
torch.zeros(A.size(0)).long()
.reshape(-1,1)
,
32, 1.0)
print (f'patches.shape = {patches.shape}')
imshow_torch_channels(patches, 0)
```
A = tensor([[[ 50., -30., 300.],
[ 10., -50., 200.],
[ 0., 0., 1.]],
[[ 50., 0., 400.],
[ 0., 60., 300.],
[ 0., 0., 1.]],
[[ 50., 0., 330.],
[ 0., 50., 200.],
[ 0., 0., 1.]],
[[ 50., -50., 100.],
[ 50., 50., 100.],
[ 0., 0., 1.]]])
patches.shape = torch.Size([4, 3, 32, 32])

%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment