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• Even better if you have fun.

• Spend some time on learning tools - matplotlib, pdb, jupyter notebooks. 

• Also good to make yourself familiar with the main libraries you use: 
numpy, pytorch.

• Usually there is already a function, which implements what you want

• And have enough sleep. 
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• pdb is your friend. StackOverflow is your friend. ChatGPT is your friend. 
Error is your friend. 

• It does not crash, but doesn’t work as expected. That’s harder, usually.
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Debug checklist: general

• Garbage in, garbage out.  Therefore check your inputs before anything 
else.

• Debugging the system is hard. Always try to isolate the problem, and work 
with a single function

• Write down toy-input and expected output. 

• Print/log everything. Input, outputs, types, counters. Everything.
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It is not always you

• Sometimes libraries have bugs too. 


• Double check before blaming them, though.


• When you find a bug in an open source library - raise issue on GitHub.



Shape and broadcasting

• Some operations depend on shape. 



Shape and broadcasting

• Some operations depend on shape. 



Shape and broadcasting

• Some operations depend on shape. 



Shape and broadcasting

• Some operations depend on shape. 



Shape and broadcasting



Shape and broadcasting



Shape and broadcasting



Shape and broadcasting



Shape and broadcasting



Shape and broadcasting

• Solution 1: understand broadcasting



Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html


• https://pytorch.org/docs/stable/notes/broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html


Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html


• https://pytorch.org/docs/stable/notes/broadcasting.html

• Solution 2: check the shape in the input, throw error if 
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html


Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html


• https://pytorch.org/docs/stable/notes/broadcasting.html

• Solution 2: check the shape in the input, throw error if 
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html


Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html


• https://pytorch.org/docs/stable/notes/broadcasting.html

• Solution 2: check the shape in the input, throw error if 
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html


Memory sharing



Memory sharing

• Many python objects share memory, 
e.g. lists, np.arrays, dicts



Memory sharing

• Many python objects share memory, 
e.g. lists, np.arrays, dicts



Memory sharing

• Many python objects share memory, 
e.g. lists, np.arrays, dicts

• your friend is: 



Memory sharing

• Many python objects share memory, 
e.g. lists, np.arrays, dicts

• your friend is: 

• from copy import deepcopy



Memory sharing

• Many python objects share memory, 
e.g. lists, np.arrays, dicts

• your friend is: 

• from copy import deepcopy
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Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values? 

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?


