
Dmytro Mishkin, FEE, CTU in Prague

Debugging PyTorch code

Before we start

Coding is not a sprint, it is a marathon

Coding is not a sprint, it is a marathon

• You should minimize your suffering

Coding is not a sprint, it is a marathon

• You should minimize your suffering

• Even better if you have fun.

Coding is not a sprint, it is a marathon

• You should minimize your suffering

• Even better if you have fun.

• Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

Coding is not a sprint, it is a marathon

• You should minimize your suffering

• Even better if you have fun.

• Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

• Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

Coding is not a sprint, it is a marathon

• You should minimize your suffering

• Even better if you have fun.

• Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

• Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

• Usually there is already a function, which implements what you want

Coding is not a sprint, it is a marathon

• You should minimize your suffering

• Even better if you have fun.

• Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

• Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

• Usually there is already a function, which implements what you want

• And have enough sleep.

Two kinds of bugs

Two kinds of bugs

• It throws an error, then read the error message.

Two kinds of bugs

• It throws an error, then read the error message.

• pdb is your friend. StackOverflow is your friend. ChatGPT is your friend.
Error is your friend.

Two kinds of bugs

• It throws an error, then read the error message.

• pdb is your friend. StackOverflow is your friend. ChatGPT is your friend.
Error is your friend.

• It does not crash, but doesn’t work as expected. That’s harder, usually.

Debug checklist: general

Debug checklist: general

• Garbage in, garbage out. Therefore check your inputs before anything
else.

Debug checklist: general

• Garbage in, garbage out. Therefore check your inputs before anything
else.

• Debugging the system is hard. Always try to isolate the problem, and work
with a single function

Debug checklist: general

• Garbage in, garbage out. Therefore check your inputs before anything
else.

• Debugging the system is hard. Always try to isolate the problem, and work
with a single function

• Write down toy-input and expected output.

Debug checklist: general

• Garbage in, garbage out. Therefore check your inputs before anything
else.

• Debugging the system is hard. Always try to isolate the problem, and work
with a single function

• Write down toy-input and expected output.

• Print/log everything. Input, outputs, types, counters. Everything.

Debugging. Specific advices
Data type

• Check the data type.

Debugging. Specific advices
Data type

• Check the data type.

Debugging. Specific advices
Data type

• Check the data type.

Specific example. What would be 1+1?

Specific example. What would be 1+1?

Specific example. What would be 1+1?

Specific example. What would be 1+1?

Specific example. What would be 1+1?

Specific example. What would be 1+1?

Some operations silently change data type,
Others do not

Some operations silently change data type,
Others do not

Some operations silently change data type,
Others do not

Some operations silently change data type,
Others do not

It is not always you

• Sometimes libraries have bugs too.

• Double check before blaming them, though.

• When you find a bug in an open source library - raise issue on GitHub.

Shape and broadcasting

• Some operations depend on shape.

Shape and broadcasting

• Some operations depend on shape.

Shape and broadcasting

• Some operations depend on shape.

Shape and broadcasting

• Some operations depend on shape.

Shape and broadcasting

Shape and broadcasting

Shape and broadcasting

Shape and broadcasting

Shape and broadcasting

Shape and broadcasting

• Solution 1: understand broadcasting

Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html

• https://pytorch.org/docs/stable/notes/broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html

• https://pytorch.org/docs/stable/notes/broadcasting.html

• Solution 2: check the shape in the input, throw error if
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html

Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html

• https://pytorch.org/docs/stable/notes/broadcasting.html

• Solution 2: check the shape in the input, throw error if
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html

Shape and broadcasting

• Solution 1: understand broadcasting

• https://numpy.org/doc/stable/user/basics.broadcasting.html

• https://pytorch.org/docs/stable/notes/broadcasting.html

• Solution 2: check the shape in the input, throw error if
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html

Memory sharing

Memory sharing

• Many python objects share memory,
e.g. lists, np.arrays, dicts

Memory sharing

• Many python objects share memory,
e.g. lists, np.arrays, dicts

Memory sharing

• Many python objects share memory,
e.g. lists, np.arrays, dicts

• your friend is:

Memory sharing

• Many python objects share memory,
e.g. lists, np.arrays, dicts

• your friend is:

• from copy import deepcopy

Memory sharing

• Many python objects share memory,
e.g. lists, np.arrays, dicts

• your friend is:

• from copy import deepcopy

Always check xy order

Checklist

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

8. Is there anything hardcoded?

Checklist

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?

