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Debugging training PyTorch code



Everything from the  
“Debugging handcrafted PyTorch code”  

applies here as well
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Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values? 

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?



Neural networks 
fail silently

And that is the problem
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Happened to me, playing with SuperPoint

Model 1 Model 2

Model 2 has a bug in config, 
not loading the weights.

Neural 
networks fail 
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Wrong preprocessing
RGB/BGR, mean, std…

2x difference in std

Good practice:  
store the preprocessing code 

together with your model
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Finally, training



Training code flow

Training loop code
Training data

Hyperparameters

Model Code

Model initialization

Model weights
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The process is very complex
That’s why you should keep everything else simple
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Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overfit

3.1. to a single batch for the beginning

4. Regularize

http://karpathy.github.io/2019/04/25/recipe/
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Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

5. input-indepent baseline

6. verify decreasing training loss

7. visualize just before the net

8. visualize prediction dynamics

9. adam is safe

http://karpathy.github.io/2019/04/25/recipe/
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Andrej Karpathy pipeline
Then regularize

1. get more data

2. data augment.

3. pretrain

4. Try smaller model size

1. try a larger model

5. Dropout, weight decay

http://karpathy.github.io/2019/04/25/recipe/
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Common bug with training

• Not moving to .train() mode

• Not applying proper data preprocessing

• Not shuffling the data (esp. for BatchNorm)

• Wrong learning rate/hyper parameters (lr_find to save)

• Bad initialization



Move from pure PyTorch to higher-level frameworks
They have tuned training loops and less bugs

• Fastai


• ignite


• pytorch-lightning


• catalyst


• etc

https://towardsdatascience.com/efficient-pytorch-supercharging-training-pipeline-19a26265adae


