ko

Debugging PyTorch code

Dmytro Mishkin, FEE, CTU in Prague

Before we start

Coding is not a sprint, it is a marathon

Coding is not a sprint, it is a marathon

* You should minimize your suffering

Coding is not a sprint, it is a marathon

* You should minimize your suffering

* Even better if you have fun.

Coding is not a sprint, it is a marathon

* You should minimize your suffering
* Even better if you have fun.

 Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

Coding is not a sprint, it is a marathon

* You should minimize your suffering
* Even better if you have fun.
 Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

* Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

Coding is not a sprint, it is a marathon

* You should minimize your suffering
* Even better if you have fun.
 Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

* Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

 Usually there is already a function, which implements what you want

Coding is not a sprint, it is a marathon

* You should minimize your suffering
* Even better if you have fun.
 Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

* Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

 Usually there is already a function, which implements what you want

 And have enough sleep.

Two Kkinds of bugs

Two Kkinds of bugs

* |t throws an error, then read the error message.

Two Kkinds of bugs

* |t throws an error, then read the error message.

* pdb is your friend. StackOverflow is your friend. ChatGPT is your friend.
Error is your friend.

Two Kkinds of bugs

* |t throws an error, then read the error message.

* pdb is your friend. StackOverflow is your friend. ChatGPT is your friend.
Error is your friend.

* |t does not crash, but doesn’t work as expected. That’s harder, usually.

Debug checklist: general

Debug checklist: general

 (Garbage in, garbage out. Therefore check your inputs before anything
else.

Debug checklist: general

 (Garbage in, garbage out. Therefore check your inputs before anything
else.

 Debugging the system is hard. Always try to isolate the problem, and work
with a single function

Debug checklist: general

 (Garbage in, garbage out. Therefore check your inputs before anything
else.

 Debugging the system is hard. Always try to isolate the problem, and work
with a single function

 Write down toy-input and expected output.

Debug checklist: general

 (Garbage in, garbage out. Therefore check your inputs before anything
else.

 Debugging the system is hard. Always try to isolate the problem, and work
with a single function

 Write down toy-input and expected output.

* Print/log everything. Input, outputs, types, counters. Everything.

Debugging. Specific advices

Data type

 Check the data type.

Debugging. Specific advices

Data type

 Check the data type.

>>> 1mport numpy as np
>>> a=[1,2]

>>> b=[3,4]

>>> a+b

[1, 2, 3, 4]

Debugging. Specific advices

Data type

 Check the data type.

>>> 1mport numpy as np
>>> a=[1,2]

>>> b=[3,4]

>>> a+b

[1, 2, 3, 4]

>>> np.array(a) + np.array(b)
array([4, 61])

Specific example. What would be 1+1?

Specific example. What would be 1+1?

>>> 1mport torch

>>> a = torch.tensor([1,1])
>>> b = torch.ones(2)

>>> ¢ = torch.zeros(2) + 1

Specific example. What would be 1+1?

>>> 1mport torch

>>> a = torch.tensor([1,1])
>>> b = torch.ones(2)
>>> ¢ = torch.zeros(2) + 1

>>> print (a.dtype, b.dtype, c.dtype)
torch.inté64 torch.float32 torch.float32

Specific example. What would be 1+1?

>>> 1mport torch

>>> a = torch.tensor([1,1])
>>> b = torch.ones(2)
>>> ¢ = torch.zeros(2) + 1

>>> print (a.dtype, b.dtype, c.dtype)
torch.inté64 torch.float32 torch.float32

>>> clal
tensor([1., 1.1])

Specific example. What would be 1+1?

>>> 1mport torch

>>> a = torch.tensor([1,1])
>>> b = torch.ones(2)

>>> ¢ = torch.zeros(2) + 1

>>> print (a.dtype, b.dtype, c.dtype)
torch.inté64 torch.float32 torch.float32

>>> clal
tensor([1., 1.1])

>>> alc]
Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: tensors used as i1ndices must be long, 1nt, byte or bool tensors

Specific example. What would be 1+1?

>>> 1mport torch >>> a+b
>>> a = torch.tensor([1,1]) tensor([2., 2.])
>>> b = torch.ones(2) >>> b+a
>>> ¢ = torch.zeros(2) + 1 tensor([2., 2.1)

>>> print (a.dtype, b.dtype, c.dtype)
torch.inté64 torch.float32 torch.float32

>>> clal
tensor([1., 1.1])

>>> alc]
Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: tensors used as i1ndices must be long, 1nt, byte or bool tensors

Some operations silently change data type,
Others do not

Some operations silently change data type,
Others do not

>>> a+1
tensor([2, 2])

Some operations silently change data type,
Others do not

>>> a+1
tensor([2, 2])

>>> ax?2
tensor([2, 2])

Some operations silently change data type,
Others do not

>>> a+1
tensor([2, 2])

- 3 5 B V.
tensor([2, 2])

>>> a/1l
tensor([1., 1.1])

It Is not always you

 Sometimes libraries have bugs too.
 Double check before blaming them, though.

 When you find a bug in an open source library - raise issue on GitHub.

Shape and broadcasting

e« Some operations depend on shape.

Shape and broadcasting

e« Some operations depend on shape.

torch.tensor([1,2,3]).float()
torch.tensor([1,2,3]).float()

Q
1

Shape and broadcasting

e« Some operations depend on shape.

a
b

torch.tensor([1,2,3]).float()
torch.tensor([1,2,3]).float()

def mul with_print(a, b):
Cc =a=xDb
print (a.shape b.shape
print (cr')

c.shape

)

Shape and broadcasting

e« Some operations depend on shape.

a = torch.tensor([1,2,3]).float()
b = torch.tensor([1,2,3]).float()

def mul with_print(a, b):
C =ax»b

Brint | a.shape b.shape c.shape; ')
print (cr')

In [5]: mul_with_print(a, b)

a.shape = torch.Size([3]), b.shape=torch.Size([3]), c.shape=torch.Size([3])
c=tensor([1., 4., 9.1)

Shape and broadcasting

In [9]: mul_with_print(a.reshape(3,1), b)
a.shape = torch.Size([3, 1]), b.shape=torch.Size([3]), c.shape=torch.Size([3, 31])
c=tensor([[1., 2., 3.1,

[2.4, 6]

(8 609

In [10]: mul_with_print(a.reshape(3,1, 1), b)
a.shape = torch.Size([3, 1, 1]1), b.shape=torch.Size([3]), c.shape=torch.Size([3, 1, 31)
c=tensor([[[1., 2., 3.11],

[[2., 4., 6.]],

[[3., 6., 9.111)

In [12]: mul_with_print(a.reshape(3,1, 1, 1), b)
a.shape = torch.Size([3, 1, 1, 1]), b.shape=torch.Size([3]), c.shape=torch.Size([3, 1, 1, 3])
c=tensor([[[[1., 2., 3.111],

[[[2., 4., 6.1]1],

[C[3., 6., 9.111])

Shape and broadcasting

Shape and broadcasting

In [12]: mul _with_print(a.reshape(3,1), b.reshape(3,1))
a.shape = torch.Size([3, 1]), b.shape=torch.Size([3, 1]), c.shape=torch.Size([3, 11])
c=tensor([[1.],

[4.],

[9.1])

Shape and broadcasting

In [12]: mul _with_print(a.reshape(3,1), b.reshape(3,1))
a.shape = torch.Size([3, 1]), b.shape=torch.Size([3, 1]), c.shape=torch.Size([3, 11])
c=tensor([[1.],

[4.],

[9.1])

In [13]: mul_with_print(a.reshape(3,1), b.reshape(1,3))
a.shape = torch.Size([3, 1]), b.shape=torch.Size([1, 3]), c.shape=torch.Size([3, 31])
c=tensorl(itl. . 2. 8:1;

(2., 4., 6.]

[6.9

Shape and broadcasting

Shape and broadcasting

» Solution 1: understand broadcasting

Shape and broadcasting

» Solution 1: understand broadcasting

e https://numpy.org/doc/stable/user/basics.broadcasting.html

* https://pytorch.org/docs/stable/notes/broadcasting.html

https://numpy.org/doc/stable/user/basics.broadcasting.html

Shape and broadcasting

» Solution 1: understand broadcasting

e https://numpy.org/doc/stable/user/basics.broadcasting.html

* https://pytorch.org/docs/stable/notes/broadcasting.html

* Solution 2: check the shape in the input, throw error if
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html

Shape and broadcasting

» Solution 1: understand broadcasting

e https://numpy.org/doc/stable/user/basics.broadcasting.html

* https://pytorch.org/docs/stable/notes/broadcasting.html

* Solution 2: check the shape in the input, throw error if
not expected

https://numpy.org/doc/stable/user/basics.broadcasting.html

e Solution 1: understand broa

e https://numpy.org/doc/ste

* https://pytorch.org/docs/s

e Solution 2: check the shape |
not expected

Shape and broadcasting

def find fundamental([docs]

pointsl: torch.Tensor, points2: torch.Tensor, weights: Optional[torch.Tensor] = None

) —> torch.Tensor:

" "Compute the fundamental matrix using the DLT formulation.

The linear system 1s solved by using the Weighted Least Squares Solution for the 8 Poi

Args:
pointsl: A set of points in the first image with a tensor shape :math: (B, N, 2),
pointsZ2: A set of points in the second image with a tensor shape :math: (B, N, 2),
welights: Tensor containing the weights per point correspondence with a shape ot in

Returns:
the computed fundamental matrix with shape :math: (B, 3, 3) .
if pointsl.shape != points2.shape:
raise AssertionError(pointsl.shape, points2.shape)
if pointsl.shapel[l] < B:
raise AssertionError(pointsl.shape)
1f not (weights 1s None):
if not (len(weights.shape) == 2 and weights.shape[l] == pointsl.shape[1]):
raise AssertionError(weights.shape)

https://numpy.org/doc/stable/user/basics.broadcasting.html

Memory sharing

Memory sharing

 Many python objects share memory,
e.qg. lists, np.arrays, dicts

Memory sharing

 Many python objects share memory,
e.qg. lists, np.arrays, dicts

Memory sharing

 Many python objects share memory,
e.qg. lists, np.arrays, dicts

e your friend Is:

Memory sharing

 Many python objects share memory,
e.qg. lists, np.arrays, dicts

e your friend Is:

* from copy import deepcopy

Memory sharing

 Many python objects share memory,
e.qg. lists, np.arrays, dicts

e your friend Is:

* from copy import deepcopy

10 c=deepcopy(a)

11 cll]+=

I .
[s el 4]

Always check xy order oo

image = torch.randn(12, 12) > 0
X, y = torch.where(image)
plt.imshow(image)

_ = plt.scatter(x, y)

oo Michat Tyszkiewicz
o @jatentaki @ o o

Odpovéd uzivatelum @ducha_aiki a @kornia foss

A common bug: confusing height and width (x and y) in some reshape
operation. A classic followup is trying to debug it with matplotlib and
getting further confused by the difference between scatter and imshow
conventions.

Prelozit Tweet

Checklist

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

2. Did | visualize everything?

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

2. Did | visualize everything?

3. Did | printed shape, data types, and values?

Checklist

ol

. Did | prepared minimal input and expected output? Math-based, or reliable library based

Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist

ol

Did | prepared minimal input and expected output? Math-based, or reliable library based

Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

torch.eye(4)
K.tensor to 1mage(K)
on-input-8-93a4aflf8c92> in <module>
. K.tensor_to image(K

'Tensor' object has no att

Traceback (most recent call last)

ribute 'tensor to image'’

Checklist

ol

. Did | prepared minimal input and expected output? Math-based, or reliable library based

Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?

* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do | have NaN-prone operations?

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?

* e.g. log, sqgrt, division, etc. Use eps there or some kind of guards

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?

* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do | have NaN-prone operations?

* e.g. log, sqgrt, division, etc. Use eps there or some kind of guards

/. Do | have some memory sharing?

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?
* e.g. log, sqgrt, division, etc. Use eps there or some kind of guards
/. Do | have some memory sharing?

8. Is there anything hardcoded?

Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?
* e.g. log, sqgrt, division, etc. Use eps there or some kind of guards
/. Do | have some memory sharing?
8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?

