
Dmytro Mishkin, FEE, CTU in Prague

Debugging training PyTorch code

Everything from the  
“Debugging handcrafted PyTorch code”  

applies here as well

Checklist
Recap from handcrafted code

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

8. Is there anything hardcoded?

Checklist
Recap from handcrafted code

1. Did I prepared minimal input and expected output? Math-based, or reliable library based

2. Did I visualize everything?

3. Did I printed shape, data types, and values?

4. Did I checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did I checked library versions and updates?

• E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do I have NaN-prone operations?

• e.g. log, sqrt, division, etc. Use eps there or some kind of guards

7. Do I have some memory sharing?

8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?

Neural networks
fail silently

And that is the problem

Handcrafted code flow

(Inference) CodeInference data Result

Deep Learning model code flow

(Inference) CodeInference data Result

Deep Learning model code flow

(Inference) Code

Inference data Result

Deep Learning model code flow

(Inference) Code

Inference data Result

Model weights

Deep Learning model code flow

(Inference) Code

Inference data Result

Model weights

Inference code flow

(Inference) CodeInference data Result

(Inference) Code

Inference data Result

Model weights

Issues without training

Issues without training

• Not loading the weights

Issues without training

• Not loading the weights

• Not moving to .eval() mode

Issues without training

• Not loading the weights

• Not moving to .eval() mode

• Applying wrong preprocessing

Not loading the weights
Happened to me, playing with SuperPoint

Not loading the weights
Happened to me, playing with SuperPoint

Model 1

Not loading the weights
Happened to me, playing with SuperPoint

Model 1 Model 2

Not loading the weights
Happened to me, playing with SuperPoint

Model 1 Model 2

Not loading the weights
Happened to me, playing with SuperPoint

Model 1 Model 2

Model 2 has a bug in config,
not loading the weights.

Not loading the weights
Happened to me, playing with SuperPoint

Model 1 Model 2

Model 2 has a bug in config,
not loading the weights.

Neural
networks fail

silently

Not moving to eval mode
Model often works, just worse

Not moving to eval mode
Model often works, just worse

Not moving to eval mode
Model often works, just worse

model.train(), 80 inliers

Not moving to eval mode
Model often works, just worse

model.train(), 80 inliers

Not moving to eval mode
Model often works, just worse

model.train(), 80 inliers model.eval(), 179 inliers

Not moving to eval mode
Model often works, just worse

model.train(), 80 inliers model.eval(), 179 inliers Neural
networks fail

silently

Wrong preprocessing
RGB/BGR, mean, std…

Wrong preprocessing
RGB/BGR, mean, std…

Wrong preprocessing
RGB/BGR, mean, std…

Wrong preprocessing
RGB/BGR, mean, std…

2x difference in std

Wrong preprocessing
RGB/BGR, mean, std…

2x difference in std

Good practice:
store the preprocessing code 

together with your model

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

Indeed …

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

However…LoFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

However…LoFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

What if we resize?

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

However…LoFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

What if we resize?

Wrong preprocessing
Another realworld example…

https://github.com/kornia/kornia/issues/2257

However…LoFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

What if we resize?

Finally, training

Training code flow

Training loop code
Training data

Hyperparameters

Model Code

Model initialization

Model weights

The process is very complex

The process is very complex
That’s why you should keep everything else simple

Andrej Karpathy pipeline

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overfit

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overfit

3.1. to a single batch for the beginning

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overfit

3.1. to a single batch for the beginning

4. Regularize

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

5. input-indepent baseline

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

5. input-indepent baseline

6. verify decreasing training loss

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

5. input-indepent baseline

6. verify decreasing training loss

7. visualize just before the net

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

5. input-indepent baseline

6. verify decreasing training loss

7. visualize just before the net

8. visualize prediction dynamics

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

3. verify loss @ init

4. init well

5. input-indepent baseline

6. verify decreasing training loss

7. visualize just before the net

8. visualize prediction dynamics

9. adam is safe

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

1. get more data

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

1. get more data

2. data augment.

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

1. get more data

2. data augment.

3. pretrain

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

1. get more data

2. data augment.

3. pretrain

4. Try smaller model size

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

1. get more data

2. data augment.

3. pretrain

4. Try smaller model size

1. try a larger model

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline
Then regularize

1. get more data

2. data augment.

3. pretrain

4. Try smaller model size

1. try a larger model

5. Dropout, weight decay

http://karpathy.github.io/2019/04/25/recipe/

Common bug with training

Common bug with training

• Not moving to .train() mode

Common bug with training

• Not moving to .train() mode

• Not applying proper data preprocessing

Common bug with training

• Not moving to .train() mode

• Not applying proper data preprocessing

• Not shuffling the data (esp. for BatchNorm)

Common bug with training

• Not moving to .train() mode

• Not applying proper data preprocessing

• Not shuffling the data (esp. for BatchNorm)

• Wrong learning rate/hyper parameters (lr_find to save)

Common bug with training

• Not moving to .train() mode

• Not applying proper data preprocessing

• Not shuffling the data (esp. for BatchNorm)

• Wrong learning rate/hyper parameters (lr_find to save)

• Bad initialization

Move from pure PyTorch to higher-level frameworks
They have tuned training loops and less bugs

• Fastai

• ignite

• pytorch-lightning

• catalyst

• etc

https://towardsdatascience.com/efficient-pytorch-supercharging-training-pipeline-19a26265adae

