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Coding is not a sprint, it is a marathon

* You should minimize your suffering
* Even better if you have fun.
 Spend some time on learning tools - matplotlib, pdb, jupyter notebooks.

* Also good to make yourself familiar with the main libraries you use:
numpy, pytorch.

 Usually there is already a function, which implements what you want

 And have enough sleep.
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* |t throws an error, then read the error message.

* pdb is your friend. StackOverflow is your friend. ChatGPT is your friend.
Error is your friend.

* |t does not crash, but doesn’t work as expected. That’s harder, usually.
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Debug checklist: general

 (Garbage in, garbage out. Therefore check your inputs before anything
else.

 Debugging the system is hard. Always try to isolate the problem, and work
with a single function

 Write down toy-input and expected output.

* Print/log everything. Input, outputs, types, counters. Everything.
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Debugging. Specific advices

Data type

 Check the data type.

>>> 1mport numpy as np
>>> a=[1,2]

>>> b=[3,4]

>>> a+b

[1, 2, 3, 4]

>>> np.array(a) + np.array(b)
array([4, 61])
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Specific example. What would be 1+1?

>>> 1mport torch >>> a+b
>>> a = torch.tensor([1,1]) tensor([2., 2.])
>>> b = torch.ones(2) >>> b+a
>>> ¢ = torch.zeros(2) + 1 tensor([2., 2.1)

>>> print (a.dtype, b.dtype, c.dtype)
torch.inté64 torch.float32 torch.float32

>>> clal
tensor([1., 1.1])

>>> alc]
Traceback (most recent call last):
File "<stdin>", line 1, 1n <module>
IndexError: tensors used as i1ndices must be long, 1nt, byte or bool tensors
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Some operations silently change data type,
Others do not

>>> a+1
tensor([2, 2])

- 3 5 B V.
tensor([2, 2])

>>> a/1l
tensor([1., 1.1])



It Is not always you

 Sometimes libraries have bugs too.
 Double check before blaming them, though.

 When you find a bug in an open source library - raise issue on GitHub.
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Shape and broadcasting

e« Some operations depend on shape.

a = torch.tensor([1,2,3]).float()
b = torch.tensor([1,2,3]).float()

def mul with_print(a, b):
C =ax»b

Brint | a.shape b.shape c.shape; ')
print ( cr')

In [5]: mul_with_print(a, b)

a.shape = torch.Size([3]), b.shape=torch.Size([3]), c.shape=torch.Size([3])
c=tensor([1., 4., 9.1)



Shape and broadcasting

In [9]: mul_with_print(a.reshape(3,1), b)
a.shape = torch.Size([3, 1]), b.shape=torch.Size([3]), c.shape=torch.Size([3, 31])
c=tensor([[1., 2., 3.1,

[ 2.4, 6]

(8 609

In [10]: mul_with_print(a.reshape(3,1, 1), b)
a.shape = torch.Size([3, 1, 1]1), b.shape=torch.Size([3]), c.shape=torch.Size([3, 1, 31)
c=tensor([[[1., 2., 3.11],

[[2., 4., 6.]],

[[3., 6., 9.111)

In [12]: mul_with_print(a.reshape(3,1, 1, 1), b)
a.shape = torch.Size([3, 1, 1, 1]), b.shape=torch.Size([3]), c.shape=torch.Size([3, 1, 1, 3])
c=tensor([[[[1., 2., 3.111],

[[[2., 4., 6.1]1],

[C[3., 6., 9.111])
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In [12]: mul _with_print(a.reshape(3,1), b.reshape(3,1))
a.shape = torch.Size([3, 1]), b.shape=torch.Size([3, 1]), c.shape=torch.Size([3, 11])
c=tensor([[1.],

[4.],

[9.1])



Shape and broadcasting

In [12]: mul _with_print(a.reshape(3,1), b.reshape(3,1))
a.shape = torch.Size([3, 1]), b.shape=torch.Size([3, 1]), c.shape=torch.Size([3, 11])
c=tensor([[1.],

[4.],

[9.1])

In [13]: mul_with_print(a.reshape(3,1), b.reshape(1,3))
a.shape = torch.Size([3, 1]), b.shape=torch.Size([1, 3]), c.shape=torch.Size([3, 31])
c=tensorl(itl. . 2. 8:1;

(2., 4., 6.]

[ 6.9
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Shape and broadcasting

» Solution 1: understand broadcasting

e https://numpy.org/doc/stable/user/basics.broadcasting.html

* https://pytorch.org/docs/stable/notes/broadcasting.html

* Solution 2: check the shape in the input, throw error if
not expected


https://numpy.org/doc/stable/user/basics.broadcasting.html

e Solution 1: understand broa

e https://numpy.org/doc/ste

* https://pytorch.org/docs/s

e Solution 2: check the shape |
not expected

Shape and broadcasting

def find fundamental( [docs]

pointsl: torch.Tensor, points2: torch.Tensor, weights: Optional[torch.Tensor] = None

) —> torch.Tensor:

" "Compute the fundamental matrix using the DLT formulation.

The linear system 1s solved by using the Weighted Least Squares Solution for the 8 Poi

Args:
pointsl: A set of points in the first image with a tensor shape :math: (B, N, 2),
pointsZ2: A set of points in the second image with a tensor shape :math: (B, N, 2),
welights: Tensor containing the weights per point correspondence with a shape ot in

Returns:
the computed fundamental matrix with shape :math: (B, 3, 3) .
if pointsl.shape != points2.shape:
raise AssertionError(pointsl.shape, points2.shape)
if pointsl.shapel[l] < B:
raise AssertionError(pointsl.shape)
1f not (weights 1s None):
if not (len(weights.shape) == 2 and weights.shape[l] == pointsl.shape[1]):
raise AssertionError(weights.shape)


https://numpy.org/doc/stable/user/basics.broadcasting.html
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Memory sharing

 Many python objects share memory,
e.qg. lists, np.arrays, dicts

e your friend Is:

* from copy import deepcopy

10 c=deepcopy(a)

11 cll]+=

I .
[ s el 4]




Always check xy order oo

image = torch.randn(12, 12) > 0
X, y = torch.where(image)
plt.imshow(image)

_ = plt.scatter(x, y)

oo Michat Tyszkiewicz
o @jatentaki @ o o

Odpovéd uzivatelum @ducha_aiki a @kornia foss

A common bug: confusing height and width (x and y) in some reshape
operation. A classic followup is trying to debug it with matplotlib and
getting further confused by the difference between scatter and imshow
conventions.

Prelozit Tweet
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Checklist

ol

Did | prepared minimal input and expected output? Math-based, or reliable library based

Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

torch.eye(4)
K.tensor to 1mage(K)
on-input-8-93a4aflf8c92> in <module>
. K.tensor_to image(K

'Tensor' object has no att

Traceback (most recent call last)

ribute 'tensor to image'’
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Checklist

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
Did | visualize everything?
Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o k~ b

Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?
* e.g. log, sqgrt, division, etc. Use eps there or some kind of guards
/. Do | have some memory sharing?
8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?



