ko

Debugging training PyTorch code

Dmytro Mishkin, FEE, CTU in Prague

Everything from the
“Debugging handcrafted Pylorch code”
applies here as well

Checklist

Recap from handcrafted code

Checklist

Recap from handcrafted code

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

Checklist

Recap from handcrafted code

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

2. Did | visualize everything?

Checklist

Recap from handcrafted code

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

2. Did | visualize everything?

3. Did | printed shape, data types, and values?

Checklist

Recap from handcrafted code

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

2. Did | visualize everything?

3. Did | printed shape, data types, and values?

4. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

Checklist

Recap from handcrafted code

1. Did | prepared minimal input and expected output? Math-based, or reliable library based
2. Did | visualize everything?
3. Did | printed shape, data types, and values?

4. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

5. Did | checked library versions and updates?

Checklist

Recap from handcrafted code

1. Did | prepared minimal input and expected output? Math-based, or reliable library based

2. Did | visualize everything?

3. Did | printed shape, data types, and values?

4. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function
5. Did | checked library versions and updates?

* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

Checklist

Recap from handcrafted code

. Did | prepared minimal input and expected output? Math-based, or reliable library based
. Did | visualize everything?
. Did | printed shape, data types, and values?

. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o ~ W DD =

. Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)

6. Do | have NaN-prone operations?

Checklist

Recap from handcrafted code

. Did | prepared minimal input and expected output? Math-based, or reliable library based
. Did | visualize everything?
. Did | printed shape, data types, and values?

. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o ~ W DD =

. Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?

* e.g. log, sqrt, division, etc. Use eps there or some kind of guards

Checklist

Recap from handcrafted code

. Did | prepared minimal input and expected output? Math-based, or reliable library based
. Did | visualize everything?
. Did | printed shape, data types, and values?

Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

a A W N =

. Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?
* e.g. log, sqrt, division, etc. Use eps there or some kind of guards

/. Do | have some memory sharing?

Checklist

Recap from handcrafted code

. Did | prepared minimal input and expected output? Math-based, or reliable library based
. Did | visualize everything?
. Did | printed shape, data types, and values?

. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o ~ W DD =

. Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?
* e.g. log, sqrt, division, etc. Use eps there or some kind of guards
/. Do | have some memory sharing?

8. Is there anything hardcoded?

Checklist

Recap from handcrafted code

. Did | prepared minimal input and expected output? Math-based, or reliable library based
. Did | visualize everything?
. Did | printed shape, data types, and values?

. Did | checked for a stupid mistakes? Like typos in variable names, naming variables as function

o ~ W DD =

. Did | checked library versions and updates?
* E.g. old torch.solve(B, A), but torch.linalg.solve(A, B)
6. Do | have NaN-prone operations?
* e.g. log, sqrt, division, etc. Use eps there or some kind of guards
/. Do | have some memory sharing?
8. Is there anything hardcoded?

9. Can the bug in one function be compensated by other bug in other function?

Neural networks
fail silently

And that is the problem

Handcrafted code flow

Inference data * (Inference) Code *

Result

Deep Learning model code flow

Inference data * (Inference) Code *

Result

Deep Learning model code flow

(Inference) Code

Inference data *

> I

Deep Learning model code flow

(Inference) Code

Inference data *

> I

Model weights

Deep Learning model code flow

(Inference) Code

Inference data *

> I

Model weights

Inference code flow

(Inference) Code

(Inference) Code

Inference data *

> I

Result

Inference data

=

Model weights

Issues without training

Issues without training

* Not loading the weights

Issues without training

* Not loading the weights

 Not moving to .eval() mode

Issues without training

* Not loading the weights
 Not moving to .eval() mode

* Applying wrong preprocessing

Not loading the weights

Happened to me, playing with SuperPoint

Not loading the weights

Happened to me, playing with SuperPoint
Model 1

0

100

100

Not loading the weights

Happened to me, playing with SuperPoint
Model 1

100

200
300
400

500 {

0 100 200 300 400 500 600 700 0 100

200

300

Model 2

400 500

600

700

100

Not loading the weights

Happened to me, playing with SuperPoint
Model 1

100

200
300
400

500 {

0 100 200 300 400 500 600 700 0 100

200

300

Model 2

400 500

600

700

100

Not loading the weights
Happened to me, playing with SuperPoint
Model 1 Model 2

100

200

300 Model 2 has a bug in config,

oo not loading the weights._

500 {

0 100 200 300 400 500 600 700

Not loading the weights

Happened to me, pllvirll with SuperPoint

Model k A
" o
100
200 : _ ;3\{' o
300 > Model 2 has a bug in config,

i r tloading the weights._

L. > - ” -
v o B : -aen > :
..
-

X ol
N . 0w . . s -5 :.." :.
. - . . :;. e - : L .' r :.. :o\.. b :. :

. . ;A,.“ - . T] . o . - . " - :‘ s * 1 : ' J
0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700

Not moving to eval mode

Model often works, just worse

200 1

400

600

800

Not moving to eval mo

Model often works, just worse

0 200 400 600 800 1000 1200

Not moving to eval mode

Model often works, just worse

model.train(), 80 inliers

:

200
400
600
800
1000

600

1200

1000

800

200

Not moving to eval mode

Model often works, just worse

200 1

400

600

800

1000

model.train(), 80 inliers

200 -) e
AL
’l.(‘v‘a; ph e s
W
LI il
A\
400
: -l 7
_ a1
600 By g '5}%
s - = ;:l'r/’ ‘
) 7] ,..i.&ﬁ/{f i
- g 2% .
==zd - Fi el
\ - 1 ‘f" iU
800 — . =
==
N Zr %
s Wanlli
\’1‘"‘.: , : 4
"' ".c.s!' 1 (I
ol
t g.s}\d) :
1000 ‘

800

(=]
N
o
o
8
o
3
o

200 1

400

600

800

1000

Not moving to eval mode

Model often works, just worse

model.train(), 80 inliers

0 200 400 600 800 1000 1200

model.eval(), 179 inliers

N -t~
200 f\\ 1\:\5_\}?,_’_

(XE

il

l'.“\‘ S
_ "u '
W b
' o

ISP

400

A

. y—-
600 Rt . g
~ o)
o ”
i 9
==ld4 - =
e . "
"y - f
» ,’ ’_‘ o S :) -
‘\\'f," /i,, . .
NS : ,
'57.."'.; pt (!
Ei'{"r)' f |
i »
1000 & ‘
0 200 400 600 800

1200

Iers

in

800

-

AR
\ zn K ,"/
R A A-wi\n ,

ural.

1200

orse

1000

N

800

model.train(), 80 inl

Not moving to eval mode

‘2
X
L S
O
=
-
O
=
o
[
ge.
o
=

200
400
60
800
1000

Wrong preprocessing
RGB/BGR, mean, std...

import timm

import timm
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

modell = timm.create_model('vggl6_bn")

config = resolve_data_config({}, model=modell)
transform = create_transform(sconfig)
print(transform)

modell = timm.create_model('vit_large_patchl4_xp_224"')
config = resolve_data_config({}, model=modell)
transform = create_transform(skconfig)
print(transform)

Compose(
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor(
Normalize(mean=tensor([0.4850, 0.4560, 0.406@]), std=tensor([@.2290, 0.2240, 0.2250]))
)

Compose
Resize(size=248, interpolation=bicubic, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=tensor([0.5000, 0.5000, 0.5000]), std=tensor([0.5000, 0.5000, 0.5000]))

Wrong preprocessing
RGB/BGR, mean, std...

import timm

import timm
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

modell = timm.create_model('vggl6_bn")

config = resolve_data_config({}, model=modell)
transform = create_transform(sconfig)
print(transform)

modell = timm.create_model('vit_large_patchl4_xp_224"')
config = resolve_data_config({}, model=modell)
transform = create_transform(skconfig)
print(transform)

Compose(
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor (

Normalize(mean=tensor([0.4850, 0.4560, 0.406@0]), std=tensor([@.2290, 0.2240, 0.2250]))
) \

Compose
Resize(size=248, interpolation=bicubic, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=tensor([0.5000, 0.5000, 0.5000]), std=tensor([0.5000, 0.5000, 0.5000]))

Wrong preprocessing
RGB/BGR, mean, std...

import timm

import timm
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

modell = timm.create_model('vggl6_bn")

config = resolve_data_config({}, model=modell)
transform = create_transform(sconfig)
print(transform)

modell = timm.create_model('vit_large_patchl4_xp_224"')
config = resolve_data_config({}, model=modell)
transform = create_transform(skconfig)
print(transform)

Compose(
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor (

Normalize(mean=tensor([0.4850, 0.4560, 0.406@0]), std=tensor([@.2290, 0.2240, 0.2250]))
) \

Compose
Resize(size=248, interpolation=bicubic, max_size=None, antialias=None)

CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=tensor([0.5000, 0.5000, 0.5000]), std=tensor([0.5000, 0.5000, 0.5000]))

Wrong preprocessing
RGB/BGR, mean, std...

import timm

import timm
from timm.data import resolve_data_config
from timm.data.transforms_factory import create_transform

modell = timm.create_model('vggl6_bn")

config = resolve_data_config({}, model=modell)
transform = create_transform(skconfig)
print(transform)

modell = timm.create_model('vit_large_patchl4_xp_224"')
config = resolve_data_config({}, model=modell)
transform = create_transform(skconfig)
print(transform)

Compose
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor

Normalize(mean=tensor([0.4850, 0.4560, 0.406@0]), std=tensor([@.2290, 0.2240, 0.2250]))
)

Compose | - .
Resize(size=248, interpolation=bicubic, max_size=None, antialias=None) 2x difference In std

CenterCrop(size=(224, 224))
ToTensor()
Normalize(mean=tensor([0.5000, 0.5000, 0.5000]), std=tensor([0.5000, 0.5000, 0.5000]))

Wrong preprocessing
RGB/BGR, mean, std...

. import timm

2 import timm
4 from timm.data import resolve_data_config
5 from timm.data.transforms_factory import create_transform

modell = timm.create_model('v%glﬁ_bn') Good practice:

config = resolve_data_config({}, model=modell) :
10 transform = create_transform(s+«config) store the preprocessing code
11 [print(transform) together with your model
12 modell = timm.create_model('vit_large_patchl4_xp_224"')

14 config = resolve_data_config({}, model=modell)
15 transform = create_transform(skconfig)
16 print(transform)

Compose
Resize(size=256, interpolation=bilinear, max_size=None, antialias=None)
CenterCrop(size=(224, 224))
ToTensor(?
Normalize(mean=tensor([0.4850, 0.4560, 0.406@]), std=tensor([@.2290, 0.2240, 0.2250]))
)
Compose | . -
Resize(size=248, interpolation=bicubic, max_size=None, antialias=None) 2x difference In std

CenterCrop(size=(224, 224))
ToTensor()

Normalize(mean=tensor([0.5000, 0.5000, 0.5000]), std=tensor([0.5000, 0.5000, ©.5000]))

Wrong preprocessing

Another realworld example...

LoF TR pretrained="indoor' does not work #2225/
schwarzwalder93 opened this issue on Mar 5 - 7 comments

@ schwarzwalder93 commented on Mar 5 - edited «

Describe the bug

LoF TR for image matching does not produce expected results when choosing the model pretrained on
indoor datasets (KF.LoFTR(pretrained="'indoor"'))

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="'indoor' does not work #2225/

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="indoor' does not work #2225/

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="indoor' does not work #2225/

Indeed ...

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="'indoor' does not work #2225/

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="'indoor' does not work #2257/

However...LOFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="indoor' does not work #2225/

However...LOFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

What if we resize?

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="indoor' does not work #2225/

However...LOFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

What if we resize?

imgl = load_torch_image(fnamel)
img2 = load_torch_image(fname2)
imgl = K.geometry.resize(imgl, (480, 640), antialias=True)
img2 = K.geometry.resize(img2, (480, 640), antialias=True)

https://github.com/kornia/kornia/issues/2257

Wrong preprocessing

Another realworld example...

LoF TR pretrained="indoor' does not work #2225/

However...LOFTR indoor model was trained on 640 x 480 images and we are providing 1296 x 968

What if we resize?

imgl = load_torch_image(fnamel)
img2 = load_torch_image(fname2)
imgl = K.geometry.resize(imgl, (480, 640), antialias=True)
img2 = K.geometry.resize(img2, (480, 640), antialias=True)

https://github.com/kornia/kornia/issues/2257

Finally, training

Training code flow

Hyperparameters

Training loop code
* Model weights
Model Code

4

*

Model initialization

The process Is very complex

The process Is very complex

That’s why you should keep everything else simple

Andrej Karpathy pipeline

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overtfit

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overfit
3.1. to a single batch for the beginning

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

1. Become one with the data

2. Set up the end-to-end training/evaluation skeleton + get dumb baselines

3. Overfit
3.1. to a single batch for the beginning

4. Regularize

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)

2. simplify

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)
2. simplify

3. verify loss @ init

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)
simplify

verify loss @ init

el

init well

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)
simplify
verify loss @ init

init well

o &~ b

input-indepent baseline

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)
simplify

verify loss @ init

init well

input-indepent baseline

o o &~ b

verify decreasing training loss

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)
simplify

verify loss @ init

init well

input-indepent baseline

verify decreasing training loss

N o o k~ W b

visualize just before the net

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

1. fix random seed (Jeremy Howard doesn’t agree)
simplify

verify loss @ init

init well

input-indepent baseline

verify decreasing training loss

visualize just before the net

© N O O & Db

visualize prediction dynamics

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

First overfit

A

. fix random seed (Jeremy Howard doesn’t agree)
simplify

verify loss @ init

init well

input-indepent baseline

verify decreasing training loss

visualize just before the net

visualize prediction dynamics

© o N O O & Db

adam iIs safe

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

1. get more data

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

1. get more data

2. data augment.

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

1. get more data
2. data augment.

3. pretrain

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

1. get more data
2. data augment.
3. pretrain

4. Try smaller model size

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

1. get more data

2. data augment.

3. pretrain

4. Try smaller model size

1. try a larger model

http://karpathy.github.io/2019/04/25/recipe/

Andrej Karpathy pipeline

Then regularize

1. get more data

2. data augment.

3. pretrain

4. Try smaller model size
1. try a larger model

5. Dropout, weight decay

http://karpathy.github.io/2019/04/25/recipe/

Common bug with training

Common bug with training

* Not moving to .train() mode

Common bug with training

* Not moving to .train() mode

 Not applying proper data preprocessing

Common bug with training

* Not moving to .train() mode
 Not applying proper data preprocessing
* Not shuffling the data (esp. for BatchNorm)

Common bug with training

* Not moving to .train() mode
 Not applying proper data preprocessing
* Not shuffling the data (esp. for BatchNorm)

 Wrong learning rate/hyper parameters (Ir_find to save)

Common bug with training

* Not moving to .train() mode

 Not applying proper data preprocessing

* Not shuffling the data (esp. for BatchNorm)

 Wrong learning rate/hyper parameters (Ir_find to save)

e Bad initialization

Move from pure PyTorch to higher-level frameworks
They have tuned training loops and less bugs

* Fastal

* Ignite

e pytorch-lightning
o catalyst

e elc

https://towardsdatascience.com/efficient-pytorch-supercharging-training-pipeline-19a26265adae

